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This is the first annual progrew report of a new study which 

seeks to assess physiologicand structural changes which accompany loss 

of vigor in forest trees. 

changes in spectral reflectance and thermal emittance characteristics 

under closely controlled laboratory/greenhouse conditions usings potted 

seedlings, where moisture stress is intraduced at several intensities. 

Particular interest is paid to associated 

Instrumentation of physiologic responses to various levels of 

moisture stress was an important part of this study. 

hydrostatic pressure chamber was used to measure moisture stress in 

A Scholander 

the foliage. This device measures the tension with which moisture is 

held in the leaf cells, and is a very sensitive indicator of temporary 

o r  permanent moisture stress in plants. A heater source probe and de- 

tector? inserted into the active xylem, was used to measure the rate 

that water was translocated upward in trees. 

port and the foliage moisture tension were measured together with the 

weight loss of the plant due to transpirational water loss for a parti- 

cular controlled level of soil moisture stress, a great deal was learned 

about the interaction of solar energy and its effect on the energy bud- 

get of a tree. 

infrared filtered radiometer gave information about the changes in - 
thermal response under various solar energy imputs in light of the ad- 

justments of physiologic f'unctions. 

When rate of water trans- 

Simultaneous measures of apparent temperatures with an 
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Spectral  ref lectance curves generated regular ly  during t h e  study 

showed t h e  changes i n  spec t r a l  response a t  various wavelengths due t o  

t h e  buildup of moisture Ftress i n  t h e  fo l iage  and r e su l t an t  change i n  

moisture content. 

made t o  iden t i fy  the  changes i n  spec t r a l  response related with l e a f  

maturity as d i f f e r ing  from the change associated so le ly  with the bui ld-  

up of moisture stress. 1% was found i n  a l l  cases that the  l e v e l  of 

water stress a t  the time of l e a f  formation and development appeared t o  

exer t  a grea te r  influence on f o l i a r  ref lectance than did the  l e v e l  o f  

water s t r e s s  a t  t he  t i m e  t he  re f lec tance  measurements were made. 

I n  t h e  case of broadleaved species, attempts were 

Special  e f f o r t  was made t o  study s t r u c t u r a l  or  anatomical changes, 

microscopically, t h a t  take place during the  long-term buildup of mois- 

ture stress and the r e su l t i ng  lo s s  of vigor. 

ments indicate  t h a t  t he  fo l iage  of pine t r e e s  affected by moisture 

shortage does i n  f a c t  undergo some s t r u c t u r a l  changes a s  a result of 

physiologic stress. However, evidence t o  date  indicates  t h a t  these 

changes a r e  not enough t o  a l t e r  t h e  spec t r a l  signature of fo l iage  t o  

permit pre-visual detect ion of moisture stress a t  the waveband 0.72- 

1.2 microns. 

Observations and measure- 

Water loss  does not a f f ec t  re f lec tance  d i r e c t l y  except i n  the 

region of t he  inf ra red  water absorption bands. Microexamination of 

t ransect ions of  fo l iage  *om conifers  that had grown under moisture 

s t r e s s  of a t  least -15 bars  (e.&., 220 pounds per square inch of tension) 

ii 



revealed that t h e  epidermal c e l l s  were t i g h t l y  packed i n  comparison 

t o  c e l l s  of' healthy fol iage.  Therq I s  evidence of nonfunctional s to-  

mata where subsidiary c e l l s  and guard c e l l s  are disor iented and the  

sub-stomatal cav i ty  has broken apart .  Thj.s would s t rongly ind ica te  

the  tree's i n a b i l i t y  t o  readjus t  unfavorable heat loads twough t rans-  

pirat ion.  

ened mesophyll c e l l  walls and reduction i n  the  area occupied by the 

Other notable differences i n  Wgh-stress needles a r e  th ick-  

cytoplasm of the  mesophyll c e l l s .  This results i n  decreased contact 

i' 
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Remote Sensing Implications of Changes i n  Physiologic Structure  
and Function of Tree Seedlings Under Moisture S t r e s s  

Frederick P, Weber 
U. S. Forest  Service 

and 

Charles E. Olson, Jr. 
University o f  mchigan 

INTRQDUCTPON 

Early detect iQn of insec t  and disease a t t acks  i s  one of the  keys 

t o  preventing epidemic conditions. I n  the  ea r ly  stages, i n fe s t a t ions  

of many organisms a re  d i f f i c u l t  t o  detect  and rapid surveys of la rge  

areas  a r e  v i r t u a l l y  impassible using ground techniques. 

Aerial  survey techniques a re  rapid and permit coverage of la rge  

areas  a t  r e l a t i v e l y  low cost .  Attempts have been made t o  u t i l i z e  a e r i a l  

photography, o r  aerial observers, for such surveys and some have been 

successful (Colwell, 1956; West, 1956; Heller e t  a l ,  1959; Meyer and 

French, 1967) while o thers  have not.  

a r e  seldom published and a cursory review af the  l i t e r a t u r e  ind ica tes  

a need f o r  a continuing e f f o r t  t o  update the  state-of-the-art, techniques 

t o  permit ready detect ion and mapping of many, i f  not most, insec t  and 

disease at tacks.  

ResLilts of W s u c c e s s f ~  attempts 

Recent advances i n  a e r i a l  reconnaissance techniques, pa r t i cu la r ly  

i n  simultaneous recording of several  spec t ra l  bands (I .e., bands d i f fe r -  
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ing i n  wavelengths recorded), appear t o  provide a more potent detect ion 

system. Work with ag r i cu l tu ra l  crops has shown that differences e x i s t  

betweer! diseased and undiseased, and f e r t i l i z e d  and unfer t i l i zed  crops 

(Hoffer and Miller,  l965; Hoffer, Holpes, and Shy, 1966; LARS, 196;) 

t h a t  permit separation of these conditions when the  cor rec t  spec t r a l  

bands a r e  used. 

l og ic  disturbances ill f c l r e s t  trees, (Heller e t  a l ,  1966, 1967) and for 

tree species iden t i f i ca t ion  (Weber, 1966). 

Similar techniques may permit detect ion of ea r ly  physio- 

Many insec t  ard disease a t tacks  produce a disrupt ion of t he  water 

metabolism of host t r e e s  by plugging or severing of the  water and so lu te  

conducting tissue,. Trees subjected t o  such a t tacks  become less vigor- 

ous and t h e i r  fo l iage  develops higher moisture tensions than unaffected 

t r ees .  The redueell rat(. of- water uptake through the  disrupted t i s s u e s  

of t h e  infected t r ees  makes them less e f f i c i e n t  a t  replacing water l o s t  

through t ranspi ra t ion .  A s  moisture stress increases,  a t  l e a s t  two 

changes occur: (1) the  fo l iage  becomes l e s s  turgid,  possibly a l t e r i n g  

the  in t e rna l  geometry of the  fo l iage  as a r e f l ec to r ;  and ( 2 )  fo l iage  

temperature increases.  These changes undoubtedly contribute t o  the  

change i n  l ea f  reflectaiicte r e l a t i v e  t o  moisture content reported by 

Thomas e t  a l ,  (1966), and t o  the  difference i n  f o l i a r  temperatures 

of pine needles observed by Weber (1965). Such differences may be de- 

tec tab le  through mult i -spectrai  reconnaissance. 

Since reduced vigor and increasing moisture stress a r e  found i n  

trees subjected t o  cirought a s  w e l l  as i n  trees attacked by a number of 
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organisms, these symptoms do not necessar i ly  indicate  the  presence 

of an in sec t  or  disease a t tack .  Careful analysis  of the pa t te rn  i n  

which the  symptoms occur may permit a t  l e a s t  p a r t i a l  in te rpre ta t ion  

of t h e i r  cause when recent  weather conditions i n  the  area are known. 

However, Olson e t  a1 (1064) showed t h a t  re f lec tance  cha rac t e r i s t i c s  

of tree fol iage change dynamically during the growing season and 

Gates [ 1965) poirlt:. out, ncveral fac tors  a f fec t ing  l ea f  ref lectance 

and emission chara!:tt>-ri :tic:s which are imperfectly understood. It 

seems l i k e l y  t h a t  a t  l e a s t  s Q m e  of the unsucL.essfu1 attempts a t  a e r i a l  

inventory of i r ~ s t - l ~ i  :AI (1 disease conditions did not a t t a i n  t h e i r  poteri- 

t i a l  bec>ause of iriadequate understanding of t he  basic pat terns  of 

change i n  reflectalive and emission from t r e e  fo l iage  and the fac tors  

producing change. 

This repor t  pi8esents results of a study of changes i n  r e f l ec t ion  

and emission charac. ter is t ics  of coiliferous and broadleaved fol iage on 

t r e e  seedlings sub,jer:t,ed to  varying degrees of moisture stress under 

greenhouse zonditioiis. 

ne1 and equipment we devoted primary e f f o r t  t o  conifers and lesser 

To make most e f fec t ive  use of avai lable  person 

e f f o r t  t o  deciduous Ftvdlings. Since previous work has shown pre- 

d ic t ions  of photographic totie from ref lectance data  t o  be more aecu-- 

ra te  f o r  broadleaved tlian for needled trees (Olson, 1964), arid because 

several  of the more important i n sec t  problems i n  the f o r e s t  are associ-  

a ted  with species of pine,  primary e f f o r t  w a s  devoted t o  the  study of 

changes i n  r e f l ec t ion  and emission cha rac t e r i s t i c s  of pine needles. 
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The University of Michigan Botanical Gardens, with greenhouses, 

environmental control :*t-iambers, and laboratories served as the active 

research site for %his study. The Botanical Gardens provided closely 

controlled environmental conditions for this research, and its proxi - 

mity to supporting scieritists arid facilities was also desireable. 

METHODS 

Under this sectioii treatments to coniferous seedlings will be 

considered first an(? to hardwood seedlings second. 

C O N I  FEHS 

Ln anticipt Tori of this greenhouse study, three-year-old red 

pine, Pinus resii,c ;a, Aiton, all(! white pine, Finus strobus, Linriacus 

were planted the summer of 1966 in seven-inch standard clay pots and 

left out-of-doors u r i t i l  the first week in January 1967. To complete 

envirJnmenta1 precoiidi t ioning, the pine seedlings were brought into 

a cool room where they were subjected to slowly increasing temperature 

and daylength. After they had been brought up to 65"~. and 20-hour 

daylength, considered optimum for growth of these pine, they were 

transferred to the greenhouse where these environmental parameters 

were maintained througliout the remainder of the study. 

From a total of twenty.five seedlings of each species, individuals 

were selected at random to be subjected to one of five levels of soil 

moisture tension. The design was created such that there were two groups 
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,. .s (species), five treatments to each group (soil- moisture tension levels), 

and five individuals per treatment. 

Prior to the greenhouse study an analysis was made of the soil 

(homogeneous for all seedlings) to determine the soil moisture release 

characteristics. Thereafter, by applying gravimetric analysis tech- 

niques, moisture content could be rapidly related to any desired level 

of soil moisture tensjon. Water was added as needed to maintain the 

desired levels throughout the study. 

At the beginning of the greenhouse experiment, after each potted 

seedling was brought to the desired treatment level, the clay pots 

were placed in heavy plastic bags which were secured around the root 

collar to prevent water loss other than through transpiration. 

Throughout the greenhouse study, the following factors were 

measured on a routine schedule: 

1. Solar and thermal radiation. 

2. Soil moisture. 

3. Rate of water movement in the xylem. 

4. Leaf moisture tensions. 

5. Transpiration. 

6. 

7. Spectral reflectance of foliage. 

At regular intervals during the study, needle samples of both 

Absolute and apparent needle temperatures. 

pine species were taken from an individual in each treatment and pre- 

pared for microscopic examination and for making photomicrographs. 



6 

Greenhouse Procedures 

Solar  Radiation 

I n  a study of t h i s  kind, one of t h e  most important quan t i t i e s  

t o  measure i s  t h e  s o l a r  input  t o  t h e  p l an t  system. 

t r ansp i r a t ion  of an individual p l a n t  is  dependent on an ex terna l  

energy source t o  sat isfy t h e  l a t e n t  heat demand. 

governing t ranspi ra t ion  rate--water vapor concentration gradient and 

d i f fus ive  res i s tances  -are inkerelated with s o l a r  energy. 

change i n  the  energy iilput w i l l  g r ea t ly  influence the  above two fac-  

t o r s  and an entireltq n e w  energy balance i s  created governing t r ans -  

p i r a t ion ,  (S la tyer ,  1 j6 - ( ) .  

The amount of 

The o ther  f ac to r s  

Thus, a 

Short-wave r ad ia t ion  incident  a t  p l an t  growing l e v e l s  was c01.- 

l ec t ed  with a recording pyrheliometer. 

of d a i l y  accumulation of incoming energy and was a l s o  usefu l  for de- 

I t  provided excel lent  records 

termining the  l e v e l  o f  incoming r ad ia t ion  a t  any pa r t i cu la r  t i m e  of 

day. Total  energy values were determined a t  any point  i n  time by com- 

bining t h e  sho r t  wave r ad ia t ion  values from the  recorder with ins tan-  

taneous long wavelength measurements made with a Stoll-Hardy infrared 

radiometer. 

S o i l  Moisture 

As  a check on the  r e l a t i v e  values of s o i l  moisture, Coleman s o i l  

moisture transducers were placed within t h e  roo t  zone i n  the  s o i l  of 

each seedling. Lead wires from each transducer were hooked individually 
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to a potentiometer for getting daily soil moisture values. 

nique served as a check on the weighing method for  maintaining soil 

moisture values within each treatment. 

This tech- 

Xylem Transport 

Sap velocity in the active xylem was measured by the heat-pulse 

techniques of Marshall (1958) as modified by Weber (1965). 

refinements in the instrumentation t o  permit recording o f  the heat 

Additional 

pulse dissipation resulted from personal communication with Robert H. 

Swanson, Rocky Mountain Forest. and Range Experiment Station (1966) arid 

from Swanson (1965). 

The equipment, used to measure the rate of transport in the xylem 

consists of a portable micro-voltmeter f o r  detecting small temperature 1 

differences between t.hermocouples inserted into the active xylem on 

either side of a heat source. A timer was built for measuring the 

desired heat load introduced into the xylem stream which automatically 

monitors the time for down-stream dissipation of the heat pulse. 

The operating principles is that a small heat source is placed 

into the xylem stream, and thermocouples inserted into the xylem above 

and below the heat source. A spacing of 4 mm. below and 7 mm. above 

the heat source allowed a minimum detectable VelociCy of 1.8 cm/hr 

with good accuracy. 

The purpose of measuring sap flow in the xylem was to add quan- 

titative information about the relationship between solar energy, soil 

moisture cgnditiops, the buildup of moisture tensions in the foliage 
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and t h e i r  e f f e c t  on r e l a t i v e  rates of t ranspi ra t ion .  The comparative 

rates of water rnprement i n  t h e  xylem of trees growing under d i f f e r e n t  

s o i l  moisture conditions is  an exce l len t  ind ica tor  of t r ansp i r a t iona l  

a c t i v i t y  . 
Leaf Moisture Tension 

Leaf moisture terisioii was an addi t iona l  parameter measured on 

a regular  schedule t.o help determine early vigor loss .  The technique 

w a s  first reported by bixon (1914) 

described by Scholander (1965). Brief ly ,  t h e  method i s  as follows: the  

twig end of a f r e s h l y  cut fo l iage  sample ( 3 t o  4 inches long) i s  i n -  

and the  apparatus improved and 

ser ted  through a r u b b e r  "0" riiig which i s  f i t t e d  t o  the top  s ide of a 

pressure ohamber. 'I'he proximal end of'  t he  twig i s  exposed t o  atmos- 

pheric pressure,  

ins ide  t h e  lower p a r t  of the  container and the  two pa r t s  are screwed 

together .  I n e r t  nitrogen gas i s  introduced slowly t o  the container 

u n t i l  f r e e  water begins  t o  exude from the  cu t  end of t h e  twig (observed 

with a 1OX hqnd lens) .  

out  t he  water co1wm-1 which retreats towards the  moisture s ink ( i n  the  

fo1iage)when the  water column i s  severed. 

The needle portion of t h e  sample i s  then placed 

Normal fo l iage  requires  less pressure t o  force 

The pressure value required 

t o  force t h e  water column t o  t h e  cu t  end of t h e  s t e m  is ca l l ed  the 

hydrastat ic  pressure value. I t  i s  t he  same value, though opposite i n  

s ign,  t o  t h e  negative hydroptatic p r e s s w e  or  leaf tension by which 

water i s  held i n  the leaf c e l l s .  This quant i ta t ive  value of moisture 
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streas in the foliage is expressed as a negative bar of leaf tension, 

e. g . , -1 bar being approximately equal to -14.7 pounds -per -square-inch 
of tension. 

Leaf moisture tension values were recorded within 90 seconds 

after removing a sample from a tree, and were obtained several times 

a day as required to account for daily variations due to varying solar 

conditions, soil moisture available, rate of water transport in the 

xylem and relative state of tree vigor. 

Transpiration 

Consideration of transpiration rates of trees at various soil 

moisture conditions is important to the understanding of differential 

energy transfer arid thermal patterns of trees at various stages of 

vigor decline. Transpiration from plant leaves involves water vapor 

transfer from the evaporating sufaces within the leaf to the leaf sur- 

face and then from the leaf surface to the surrounding atmosphere. 

This transfer of energy is responsible for a heat flux in the plant 

and is a major mechanism for heat dissipation, thus creating a cooling 

effect. This action is thought to be important to plants in maintain- 

i 
, .P 

ing tolerable temperatures in sunlight conditions, and thus, an inter- 

ruption of this cooling process through a disruption of the water 

transfer can be harmful. 

for thermal detection of moisture stressed vegetation. 

Differential heating of plants is the basis 

Recognizing the vgriability of plant material and the effect of 

differing environmental conditions, the best method for measuring trans- 
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piration of individual trees appeared to be by the measurement of 

weight loss from the whole system. 

(i.e., a stain gauge) lysimeter which was used to measure the instan- 

taneous weight of an individual seedling, or  track the weight loss over 

time, which could be recorded on an analog chart. The load cell trans- 

ducer gave a linear elerhl.rical output of 0 to 12 millivolts which was 

calibrated for weights from 0 to 7900 grams f u l l  scale output, accurate 

to - 2.5 grams. 

normal daily transpirational weight loss. 

This w a s  done wi%h a load Cell 

+ The precision of this measurement was about 2% of the 

Foliage Temperatures 

Foliage temperaLure provides a direct means to measure tree vigor 

as varying environmental r>ondi tioris affect physiological functions when 

related to the energy flow. This includes a measure of both the abso- 

lute temperature and the apparent or emitted temperature. These kinds 

of temperature data permit us to evaluate the expected effectiveness 

of a thermal detecticn system in discriminating between healthy and 

moisture stressed seedlings as a function of time of day, physical en- 

vironment and level of tree vigor. 

Absolute - temperature. Leaf temperatures were obtained by inserting 

copper-constantan thermoc-ouples, approximately 2.5 mm. long and sharpened 

to a point, into living cell tissue of individual needles. These thermo- 

couples were placed inside needles of one individual per treatment. 

Lead wires joined the thermocouples to a multipoint strip chart recorder. 
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The recording device w a s  

tures during t h e  first 1 5  minutes of each daylight hour and 1 5  minutes 

every two hours a t  night .  

programmed t o  automatically record tempera- 

Apparent temperature. Emitted temperatures were measured per iodi-  

c a l l y  with a Stoll-Hardy infrared radiometer (Figure 1). 

energy t o  the  radiometer was sampled a t  various bandwidths i n  t he  spec- 

t rum,  e .g . ,  energg from wavelengths longer than 3.5 microns, between 

4.5 and 5.5 microns , and between 8 .I and 13.2 microns 

put of the inf ra red  radiometer was t o  give A T  (difference i n  temperature) 

values i n  t en ths  of degrees centigrade between fo l i age  of trees subjected 

Incoming 

The useful  out-  

t o  various l e v e l s  of moisture stress a t  variouq t i m e s  of t he  day and 

under varying solar input vonditions , 

Reflectance 

The r e f l e c  tar1c.e curves generated during t h i s  study were measured 

with a Beckman DK-2a spectrophotometer. This instrument measures the  

r a t i o  of monochromatic energy r e f l ec t ed  from the  sample fo l iage  t a  t h a t  

r e f l ec t ed  from a magnesium oxide coated aluminum p la t e ,  which i s  a 

nearly per fec t  (0.98) d i f fuse  r e f l e c t o r .  This r a t i o ,  expressed a s  a 

percentage, is  p lo t ted  against  t h e  wavelength of incident  rad ia t ion .  

The e f f ec t ive  region for t h i s  ins t rument  with the  lead su l f ide  and 

photo-multiplier de tec tors  i s  0.38 t o  2.70 microns. 

Foliage re f lec tance  responds t o  changes i n  l e a f  s t ruc tu re ,  pig-  

mentation and moisture content as affected by changes i n  tree vigor. 

b 
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Figure 1. --Stoll-Hardy infrared radiometer being used to measure 
emitted temperature of pine seedlings used in the study. 
meter head, in the upper right-hand corner, houses the thermistor 
detectors and bandpass filters. 

The radio- 
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The spectrophotometer was located i n  a stable environmeat room 

within a f e w  s teps  of t h e  experimental greenhouse. The convenience of 

t h i s  setup permitted re f lec tance  measurements t o  be made on individuals  

from each treatment every f e w  days, thereby showing pa t te rns  of r e f l e c -  

tance change a s  a function of wavelength throughout t h e  length  of t h e  

study . 
Spectral  reflectance curves w e r e  run a t  least  once each week 

throughout the study rovering the  bandwidth 0.5 t o  2.6 microns fo r  the 

conifer  tes t  seedlings. A l l  spec t r a l  data presented i n  t h i s  repor t  

have been corrected f o r  e r ro r s  due t o  deviations of the  zero and 100% 

s e t t i n g - o f  t h e  spec*trophotometer, and have a l so  been corrected f o r  

de te r iora t ion  of t he  magnesium oxide standard. Spectral  re f lec tance  

data fo r  conifers  have been corrected fo r  scal ing and run differences,  

and re f lec tance  values as a function of wavelength are thus comparable 

between dates. 

Laboratory - ,  Procedures 

Previous observations and measurements made on another f o r e s t  

remote sensing study indicated t h a t  the  fo l iage  of pine trees affected 

by moisture stress undergoes s t r u c t u r a l  changes tha t  subs tan t ia l ly  

a f f e c t  re f lec tance  cha rac t e r i s t i c s .  There i s  considerable speculation 

i n  t h e  l i t e r a t u r e  which attempts t o  explain changes i n  re f lec tance  of 

decidous fo l iage  a s  it i s  af fec ted  by moisture stress and loss of tux- 

gor; however, l i t t l e  work appears t o  have been done i n  that area w i t h  
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conifers. Consequently, it was made a prime objective of this study 

to investigate structural changes that might be evidenced through 

microscopic examination which would effect changes in the spectral 

reflectance characterist5cs of foliage grown under varying levels of 

moisture stress, 

Slide Preparation 

Coincidental wi t h physiological and phy sical/environmental 

measurements, needle samples were taken from each individual at regu- 

lar intervals throughtit the study. After considerable practice good 

freeharid transections were achieved at about 20-micron thickness. 

These sections were immediately viewed under a microscope, and in most 

cases were photographed. 

At the end of the stud;, foliage samples from each group were 

killed and fixed in Bouiii's fluid, dehydrated in tertiary bu ty l  alcohol, 

and embedded in 58"('. Bioloid. 

20-micron thicknesses on a rotary microtome. 

glass slides the sections were stained with two coal tar dyes, fast 

green, which highlighted lignified cells and safranin which highlighted 

non -1ignif ied subs tarices . 

Transections were obtained at 15 and 

After being mounted on 

Photomicrography 

The mask useful photomicrographs taken of these slides were made 

with Ansco D-200 color film. Subtle differences that were present in 

cell walls and other structures simply did not show up as well on other 

photographic media. The taking of photomicrographs was a simple matter 
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with a spot-matic type camera attached d i r e c t l y  to  the op t i ca l  viewing 

system of a high-power microscope. 

HARDWOODS 

Work with broadleavedspecies begac i n  January 1967. The main 

emphasis of the work w a s  placed on the  e f f e c t s  of moisture content 

and moisture stress on fol iage ref lectance charac te r i s t ics .  Several 

economies w e r e  accomplished by combining work on t h i s  pro jec t  with 

work being performed i n  connection with Forest  Service Contract 13-220. 

Although most of the  results of t h i s  combined e f f o r t  w e r e  included i n  

the  f i n a l  repor t  on tha t  contract  (Olson, 19671, they are repeated 

here because of the important bearing which these data  have on the 

conclusions s t a t ed  la te r  i n  t h i s  report .  

GEEENHOUSE PROCEDURES 

I n  l a t e  February e ight  t r e e s  were moved indoors and. induced to  

break dormancy i n  the  manner described fo r  pine. 

regular ly  and four received no water u n t i l  t he  evening of May 7; 

otherwise a l l  e ight  seedlings were grown under comparable cnviron- 

mental conditions i n  a s ing le  area i n  the  greenhouse. 

l a rge  mature l e a f  and. one s m a l l  immature l ea f  were selected on each 

tree and tagged fo r  ident i f ica t ion .  

leaf were selected on each tree on .April 5 and A p r i l 1 8 ,  respectively.  

Leaf s i z e  a t  the  t i m e  of se lec t ion  ranged from 6 t o  41 sq. em. for  

Four were watered 

04 Masch 28 One 

A second, and then a t h i r d ,  immature 

immature leaves,  and from 147 t o  254 sq. em. fo r  mature leaves.  
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Light reflectance measurements were made on each leaf without 

removing the leaf from the plant. Instead, the entire seedling was 

moved into the spectrophotometer room and then returned to its ori- 

ginal greenhouse location after the measurements were completed. 

This process was repeated at intervals from March 28 through May 17 

and on each occasion the leaf was placed in the spectrophotometer 

in as nearly the same position as possible. The resulting data pro- 

vide a sequence of reflectance measurements over time for leaves 

that appeared to function normally throughout the study. Water 

stress was monitored for eacn tree using the Scholander pressure 

cell, and the size u f  each tagged leaf was determined f r o m  leaf 

prints obtained on photographic proof paper at intervals throughout 

the study. 

Another group of seedlings was moved indoors in mid-March and 

induced to break dormancy. As soon as leaf flushing began, all ten 

trees in this group vere moved to the greenhouse and water regularly 

for four weeks. 

of five of these seedlings and they received no further water until 

measurements were discontinued on May 19. The remaining five trees 

continued to receive water regularly. Data collection from this group 

of seedlings was accomplished in the same manner as for the first 

group, of trees. 

On April 25, plastic bags were placed over the rrpots" 

A final series of measurements was obtained in September. The 
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seedlings used 

a t  least  every 

June a l l  trees 

previously had b@en l e f t  i n  the  greenhouse and watered 

second day from May 19 through September 2. 

were f e r t i l i z e d  with a balanced l i q u i d  fer t i l izer  

I n  mid- 

whose exact nu t r i en t  content i s  unknown. 

vegetative growth of a l l  trees. On September 2, p l a s t i c  bags were 

placed around t h e  r 'potslr of seven of t he  trees which had been sub- 

jected t o  moisture s t r e s s  i n  the  spring. 

fur ther  water u n t i l  tlata co l lec t ion  was concluded on September 20. 

The most severe water stress i n  the  seedlings occurred i n  September. 

Water stress was sc, severe i n  September t h a t  several  leaves and t e r -  

minal buds withered a i i d  t u r n e d  black. This condition had not developed 

during April o r  May, although water tensions a t  0800 i p  excess of -20 

bars  were a l so  recorded i n  May. 

This promoted vigorous 

These seven received no 

Reflectsnce v. moisture content 

Leaves from one-year o ld  seedlings of sycamore (Platanus occi-  -- - 
den ta l i s  L .  ) and yellow poplar (Liriodendron t u l i p i f e r a  L .  ) were used 

t o  determine the  e f f e c t  of decreasingmoisture content on fo l iage  re- 

f lectance.  

a l so  used. 

(neares t  0.0001gram) and then placed i n  the  Beckman DK-2a spectro- 

photometer. After a re f l ec t ance  curve f o r  t he  wavelength range from 

0.5 t o  2.6 microns had been obtained, t he  l e a f  was weighed again. 

t he  l ea f  had a i r -d r i ed  f o r  1 5  t o  30 minutes, it was weighed, another 

Three cottonwood (Populus de l to ides  Bartr . ) leaves were 

Leaves picked from the seedlings were weighed immediately 

When 
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re f lec tance  curve obtained from as nearly t h e  same spot on t h e  l e a f  as 

possible, and the  l e a f  reweighed and allowed t o  a i r -dry  f o r  another 

1 5  t o  30 minutes. 

so b r i t t l e  that it could not be placed i p  t h e  spectrophotometer with- 

This procedure w a s  repeated u n t i l  t h e  leaf became 

out  breaking. 

t i m e ,  and t h i s  oven-dry-weight used t o  ca lcu la te  leaf moisture content 

The l e a f  w a s  then oven-dried avd weighed f o r  t h e  las t  

a t  each previous weighing. Leaf moisture content decreased by approxi- 

mately 8 percent j n  t h e  t i m e  required t o  obtain the  re f lec tance  curve, 

and the  average of moisture content before and a f t e r  any ref lectance 

curve has been used a s  the moisture content of t he  leaf a t  t he  t i m e  

the curve w a s  run. 

Subsequently, measurements of moisture content were obtained 

f o r  leaves taken from seedlings subjected t o  severe moisture s t r e s s .  

In  no case was the moisture content a t  the time t h e  l ea f  was picked 

less the  218 percent of i t s  oven-dry-weight, and t h i s  value was observed 

fo r  a l e a f  taken from a seedling f o r  which moisture tension measurements 

exceeded-20 atmospheres a t  8 a.m. 

For a small p a r t  of the data ,  t he  photo-rtiultiplier detector  

w a s  used with the  DK-2a, extending the  wavelength range of t he  in s t ru -  

ment t o  0.38 micron on the  shor t  wavelength end. 

Reflectance v .  moisture stress 

Two-year-old yellow poplar seedlings were used t o  inves t iga te  

re la t ionship  between moisture stress and l e a f  ref lectance.  

seedlings had been obtained from the  Jonesboro, I l l i n o i s ,  S t a t e  Tree 

These 
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IJursery and planted in individual four-gallon cans in May 1966. 

trees were watered daily and kept outdoors in full sunlight through 

the 1966 growing season. 

The 

Soil moisture was near field capacity in 

the cans when they were "heeled-in" during November. 

RESULTS 

CHANGES OBSERVED IN CONIFEB SPECIES 

Needle Moisture Tension 

The hydrostatic. pressure necessary to force the water column 

in the xylem back to its original level, (at the cut edge of the stem), 

is a very sensitive indicator of moisture stress in foliage and can 

be related to other measures of tree vigor. 

this study was active, a great number of leaf moisture tension measure- 

ments were made with our modified Scholander pressure cell. There was 

found to be great consistency in the tension measurements between indi- 

viduals of the same treatment, and the mean value of tension for  each 

treatment was usually very close to those values 

measurements of soil moisture. In every case, a deviation from a 

treatment value showed a measured tensian value of greater stress than 

that set by the established soil moisture conditions. 

marily to the transpirational lag which occurred during sunny conditions 

and was an expression of a tree's inability to supply water to the 

During the three months 

checked by other 

This is due pri- 

foliage as rapidly as it was depleted through transpiration. 

The inter-dependency of physiologic functions on physical environ- 
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ment cannot be expressed too strongly. 

wailability to the treatment trees was clQsely controlled at five 

Within treatments, moisture 

levels. Two important factors which were not measured are vapor 

pressure and carbon dioxide concentratiop- These factors are mentioned 

here merely in recognition of their importance as possible controls or 

limiting factors in the gas exchange mechanism involved with transpira- 

tion/respiration processes. In a study of this sort where soil moisture 

availability is controlled at various levels, the most important physi- 

cal input is that from solar energy. 

The relation between soil moisture tension, solar energy input 

and the buildup of moisture tension in the foliage as measured with 

the hydrostatic pressure cell was particularly consistent. Table 1 

shows an example on 28 April, 1967, of the daily variation of needle 

moisture tension as affected solar energy. Also shown in the table 

are values for the rate of transport in the xylem, because of its in- 
Q 

I separable relationship to soil moisture availsdbility, solar energy, 

and the buildup of leaf mois-t.ure tension. The same types of measure- 

ments were made for these same factors throughout the study. The only 

deviation from this pattern showed up near the end of the study f o r  

individuals in the high soil moisture tension ( -15 bars) treatment. 

In this case, there was no measureable recovery from the high moisture 

tension in the foliage; that is, the foliage remained above -21 bars 

of tension regardless of the time of day or the solar input conditions. 
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Table 1. --Daily variation of leaf moisture tensions and rate of xylem 
transport as a f’unction of solar input at -@hree controlled soil moisture 
availability conditions on April 28, 1967. 

Factors 

Leaf Moisture Tension 

(bars) 
-1 bar 

Treatment -7 bar 
Levels -15 bar 

Xylem Transport 

(em./hr.) 

-1 bar 
Treatment -7 bar 
Levels -15 bar 

L/ 
0900 

-2.5 
-7.6 
-18.4 

7.1 
5.9 
1.8 

Time of Day 

!?/ 
1200 

-1.2 
-10.0 

7-20.5 

12.7 
5- 3 

(1 .5  

-1 

-2 -1 

-2 -1 

Solar Radiation 0.45 Cal.cm. -2 min 

- 2/ Solar Radiation 1.22 Cal. cm. min 

Solar Radiation 0977 Cal , cm. min 

2l 
1500 

-1.6 
-8.5 

> -20.5 

8.6 
6.1 
2.1 
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Signi f icant ly ,  about t h e  same t i m e ,  t h e  rate of xylem t ranspor t  dropped 

below t h e  minimum measureable rate. 

sectioned a t  t h i s  s tage  showed an apparent b r e a k d m  i n  t h e  function 

of t h e  stomata--an ind ica t ion  that the  trees had died from t h e  s tand-  

point  of not being able  t o  recover from the  e f f e c t s  of the  long-term 

physiologic stress. 

Micro-examination of fo l i age  

Xylem Transport 

P r io r  mention w a s  made of t h e  relationshipbetween t h e  rate of 

xylem t ranspor t  and such physical conditions as s o i l  moisture ava i lab i -  

l i t y  and incoming so la r  rad ia t ion .  A s  might be infer red  from Table I, 

fo r  seedlings growing under favorable s o i l  moisture conditions, e . g . ,  

1 bar of tension ( o r  1 negative atmosphere), t he  rate of water t r ans -  

port  i n  the  xylem (and the  r a t e  of t r ansp i r a t iona l  water loss )  i s  

d i r e c t l y  r e l a t ed  t o  incoming so la r  r rd i a t ion .  That i s ,  the  grea te r  

the so l a r  rad ia t ion ,  t h e  g rea t e r  t he  r a t e  of t ranspor t  i n  t he  x y l e m .  

Occasionally, i n  s p i t e  of t he  favorable s o i l  moisture and sun conditions, 

there  i s  evidence of t he  e f f e c t s  of a mid-day t r ansp i r a t iona l  l a g  when 

xylem t ranspor t  i s  reduced by an unfavorable hydrostat ic  grad ien t .  An 

example of t h i s  i s  shown i n  Table 2 a t  1200 on April 21 i n  the  -15 bars  

treatment where xylem t ranspor t  rate dropped t o  less than 1 . 5  em. /hr. 

I n  considering the  case of less favorable s o i l  moisture conditions, 

e .g . ,  -12 or -15 bars  of tension, so l a r  r ad ia t ion  does not always i n -  

crease xylem t ranspor t .  The r a t e  of xylem t ranspor t  i s  e f fec ted  by 
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(1) solar radiation which provides the energy necessary for transpirai- 

tional processes, which in turn creates a moisture sink &/ in the 
foliage due to evaporation of moisture to the atmosphere; and (2) by 

I 

d 
I 

/ 
f 

i 

i 

soil moisture availability. According tc the cohesive-tension theor?g 

of water movement in woody plants, there is a source of moisture in 

the soil and a sink for moisture in the foliage. In order f o r  water 

to move to the top of a tree there must be a hydrostatic pressure 

gradient with increasing tensions from the site of removal of moisture 

from soil particles by the active absorbing roots ,  through the length 

of the unbroken water columns in the xylem, to the transpirational sites 

in the foliage. 

Transpiration 

The design of this portion of the study was conceived so as to 

determine the rate of transpirational water loss as measured gravimetri- 

cally with the load cell lysimeter, These data are very important to 

the interpretability of the other physiologic data - and vice versa - 0 

and were most useful in considering transpiration rates over short 

periods of time, e.g., 30 minutes. 

As shown in Table 2, which considers physical and physiologic 

factors simultaneously, at four sampling periods during the study, trans- 

piration is another factor which is inseparably related to solar input, 

soil moisture, yylem transport and moisture tension in the foliage. 

A sink is defined as a site of temporary excessive 

moisture loss. 
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For example, in Table 2, at 1200 On April 21, treatment trees at -1 

bar soil moisture tension had low values (1.8 bar) for leaf tension 

while the rate of xylem transport was high (11.0 em. /hr. ) . The re- 
latively high value for rate of transpiration (62 gn./hr. ) - irdicates 
that trees in this condition were able to maintain the transpiration 

load at that level of solar energy input (1.05 Langleys). 

at the same date and time, the -12 bar treatment trees responded to the 

same energy load with a low level of xylem transport (2.8 cm./hr.) 

and of transpiration (20 gmlhr,). Also, the leaf moisture tension 

values built up beyond the measuring capabilities Qf the hydrostatic 

pressure cell (3OW psi). This indicates an unfavorable hydrostatic 

tension gradient tliroughout these seedlings. 

However, 

' Prior mention was macle of the fact that transpirational activity 

was not measureable in the high tension treatment towards the end of 

the study. 

measure of transpiration. At that same time wlem transport activi- 

ty had also dropped below the measureable level, and leaf tensions 

were uniformally high regardless of time of day. 

This is shown in Table 2 on 16 May when there was no 

Ehitted Temperatures 

Thermal measurements made with the Stoll-Hardy infrared radio- 

meter throughout the study are summarized in Table 2. Although measure- 

ments were made regularly, it is most useful here to consider apparent 

temperatures simultaneously with other physical and physiologic measures. 

The primary purpose for gathering thermal date was to see if in 
, 
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fact under closely controlled moisture stress condition, and with care- 

ful measurement of other factors, there were differential emitted tem- 

peratures between individuals of various treatment levels. 

There were times durin6 the study when greater thermal differences 

were recorded than those shown in Table 2; however, the temperature 

differences recorded on the afternoon of May 16 are shown to be signifi- 

cantly different when subjected to a statistical test. That is, due 

to low variation between individuals in treatment groups, the tempera- 

tures of the highest moisture stress group ( -15 bar) were different 

from those in the lowest three treatments (-1, -3 and -7 bar). In 

addition, the -12 bar treatment temperatures were found to be different 

from the lowest stress group (-1 bar). 

Spectral Reflectance 

The same four representative sampling dates - 28 February, 27 

March, 21 April, and 16 May - were selected for presenting spectral 

data, because they are in distinct periods of change in the response 

of study.trees, and they coincide with dates where other physical and 

physiologic data have been presented. 

Figure 2, a composite of the four sampling dates, presents spec- 

tral reflectance curves of individuals sampled from the two extreme 

treatment groups, -1 bar and -15 bars of soil moisture tension. Al- 

though the data presented in Figure 2 are generated from one randomly 

selected individual in t h e  two treatment groups, curves were run for 

each individual in the study at each of the sampling periods. A compari- 
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Figure 2. --Spectral reflectance curves generated from individual 
white pine fo l iage  samples a t  four periods throughout the  study. 
Sol id  l i n e  curve represents response of l o w  moisture stress fo l iage  
and broken l i n e  curve represents response of high moisture s t r e s s  
fo l iage  . 
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son of corrected spec t r a l  curves showed very l i t t l e  difference i n  re- 

f lectance 

the  same groups. 

values as a function of wavelength between individuals of 

A t  t he  beginning of the study, j u s t  after the  s o i l  moisture l eve l s  

there was v i r t u a l l y  no difference i n  the  spec t ra l  

The f i r s t  change 

had been establ ished,  

values between treatment groups a s  shown i n  Figure 2a. 

i n  the spec t ra l  response appeared one month after the  beginning of the 

study (Figure 2b). 

tance i n  the waveband 0.75 t o  1 .3  microns. 

no change i s  shown i n  the v i s i b l e  portion of the  spectrum shown, (0.5 t o  

T h i s  change was expressed a s  an increase i n  r e f l ec -  

Noteworthy i s  the  f a c t  that 

0.7 microns). 

during the  next f i v e  weeks a s  shown i n  Figure 2c. It was a t  least i n -  

t e res t ing ,  i f  not unexpected, t h a t  t h i s  difference i n  ref lectance i n  

the near infrared region of the  spectrum showed up on infrared color 

The same bncyease i n  ref lectance w a s  evidenced each t i m e  

f i lm i n  April-. 

Figure 2d shows the  s ign i f icant  and predictable  change i n  the 

spec t ra l  response a s  a funct:.on of wavelength a t  the close of the  green- 

house study. 

phyl l  absorption band 0.63 microns, t he  change i n  slope and amplitude 

Most notable a r e  the  lo s s  of the  red (v i s ib l e )  chloro- 

of the bandwidth 0.70 t o  0.85 microns, the d i s t i n c t l y  lower r e f l e c t -  

tance values between 0.70 and 1.17 microns, and the  ra ther  la rge  i n -  

crease i n  ref lectance values between 1.17 and 2.5 microns. 

the crcms-over i n  the re la t ionship  of ref lectance fo r  healthy and mois- 

t u r e  s t ressed fo l iage  between 0.70 and 1.17 microns i s  a phenomenon of 

I n  conifers,  
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of considerable i n t e r e s t .  

Although the t o t a l  spec t r a l  response i s  in te res t ing ,  some wave- 

lengths are of pa r t i cu la r  i n t e r e s t .  Reflectance values f o r  four wave- 

lengths (0.85, 1.05, 1.64 and 2.20 microns) are shown i n  Figure 3, 

p lo t ted  over sampling date. Although it is  apparent that the l i n e  

graphs were constructed by connecting s t r a i g h t  l i n e s  between sampling 

dates ,  the rate of change depicted i s  r e a l i s t i c  i n  l i g h t  of a l l  data 

col lected.  

It is  s ign i f i can t  t o  note t h a t  the spec t r a l  responses, and par- 

t i c u l a r l y  the change i n  response a t  various wavelengths, occurred i n  

April  coincident w i t h  major changes i n  the physiologic responses shown 

i n  Table 2. 

S t ruc tura l  Influences on Leaf Reflectance 

The r e l a t ive ly  low re f l ec t ion  of v i s i b l e  radiat ion i n  conifers  

i s  a t t r i bu ted  i n  pa r t  t o  the  high absorption by l ea f  pigments, p r i -  

marily the  chlorophylls. However, these pigments a re  transparent t o  

infrared rad ia t ion  and the high ref lectance a t  these wavelengths 

appears t o  be determined by the  in t e rna l  s t ruc tu re  of the  leaf. I n  

addi t ion t o  the absorption by  chlorophyll of t he  mesophyll c e l l s ,  the  

r e l a t i v e l y  low ref lectance of v i s i b l e  l i g h t  by conifer needles as com- 

pared t o  broadleaved species i s  due t o  compact i n t e rna l  s t ruc ture  and 

the  or ien ta t ion  of t he  needles with respect  t o  the i l lumination and 

the  viewing angle. The ref lectance minima a t  1.45, 1.95 and 2.60 m i -  

crons (see Figure 2) a r e  due t o  the strong absorption bands of water. 

i 
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Figure 3. --Spectral ref lectance values for individual white pine fol iage 
samples p lo t ted  by four sampling dates.  
tance values a t  d i f f e ren t  wavelengths, e.g. (a)  0.85 microns (b)  1.05 mic- 
rons, ( e )  1.64 microns, and (d)  2.20 microns. $olid l i n e  connects r e f l ec -  
tance values of low moisture stress fol iage,  and broken l i n e  connects re- 
f lectance values of high moisture stress. 

Each set of curves depicts  r e f l ec -  
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Observations and measurements made on this study indicate that 

the foliage of pine seedlings affected by moisture shortage undergo ' 

structural changes as a result of physiological stress, which substan- 

tially affect reflectance characteristics. 

Individual pine needles are composed of an ordered distribution 

of cells, each bounded by a cell w a l l  which in turn usually holds 

living cytoplasm. Tine cytoplasm itself is highly organized and is a 

membranous system containing many subcellular bodies and a wide variety 

of chemicals dissolved in an aqueous medium (Esau, 1965). Consider a 

transection of a healthy pine needle, e.g., a highly magnified portion 

of a needle is shown in Figure 4; the outer circumference (two to three 

cells thick) consists of a layer of cells called the epidermis and the 

hypodermis. A stressed needle is shown in transection in Figure 5 for 

comparison. These cells are thought to lack chlorophyll. The next 

tightly packed multi-layer of cells is the mesophyll, which occupies 

by far the greatest volume within conifer foliage. The irregular 

shaped mesophyll cells ccntain the chloroplasts which are high in chlo- 

rophyll content. 

A single layer of cells ringing the inside of the mesophyll (not 

To the center of the needle from pictured) constitute the endodermis. 

the endodermis are found the transfusion tissue, tracheids and the 

vascular bundle. 

There are several examples in the literature of models depicting 

the hypothetical path of visible and near infrared radiation through 
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Figure 4. --Photomicrograph (430X) of a 1 5  micron thick section of the 
outer perimeter of a transection through a healthy red pine needle. 
tral portion (A) shows stomata in closed position, with subsidiary cells 
.(B) and guard cells (C) and intact sub-stomatal cavity (D). 
cell walls (E) appear rigid from lignification, and cytoplasm (F) appears 
in contact with mesophyll ridges. 

Cen- 

Mesophyll 

C 

A 

B 

Figure 5. --Photomicrograph (430X) of a portion of the outer perimeter of 
a transection through a needle suffering from long-term moisture stress 
( -15 atm.). Notably, the epidermal cells are tightly packed (A), except 
for subsidiary cells (B) of the stomata which are dram open. 
cells (C) are non-functional and sub-stomatal cavity (D) is broken apart. 
Mesophyll cell walls (E) appear slightly thickened but not collapsed, while 
cytoplasm (F) occupies relatively less space within each mesophyll cell. 

Also, guard 



, 

33 

deciduous leaves, but apparently none for conifers. Very little 

radiation (approximately 4%) is reflected directly by the external 

surface of a healthy needle as the epidermis is nearly transparent 

to radiation. A portion of the incident radiation is transmitted 

directly through the needle, while the remainder is scattered, re- 

fracted and diffused internally. 

of conifer foliage is influenced by internal structure is that the 

reflection and transmission spectra are the same shape and are comple- 

mentary to the absorption spectra. The close relationship of reflec- 

tance to transmission (and absorption) indicates that reflectance 

characteristics are also determined, at least in part, within the 

needle structure. 

An indication that reflectivity 

In this study, reflectance curves were run for two species of 

pine in comparison with two species of hardwoods and in all cases in 

the waveband between 0.5 and 2.6 microns (except .75 to 1.25 microns); 

hardwood reflectance values were higher. Reflectance values for newly 

developing conifer foliage were considerably higher than those from 

old foliage, but were still lower than the curves for hardwoods. 

This much discussed phenomenon of internal light scattering in 

leaves, likely occurs most frequently due to reflection at cell wall- 

air cavity interfaces,within the mesophyll. The interfaces represent 

refractive index changes in the order of 1.0 for air to 1.4 for hydrated 

cell walls. Some botanists have been able to show for deciduous leaves 

that these interfaces contribute to the reflectance by infiltrating the 
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a i r  spaces with water, i n  which case the  ref lectance i s  reduced con- 

siderably.  

It i s  not r e a l l y  su f f i c i en t  t o  leave t h i s  subject by merely say- 

ing  t h a t  ref lectance from conifer  fo l iage  is s imi la r  t o  deciduous, a s  

it i s  s t i l l  not known exactly where t h e  major r e f l ec t ing  surfaces a r e  

or t o  what extent  these surfaces o r  s t ruc tures  contr ibute  t o  the  t o t a l  

reflectance.  Although controversial  and a s  ye t  incomplete, t he  above 

suggested mechanisms of ref lectance w i l l  be re fer red  t o  i n  an attempt 

t o  explain the  ref lectance changes associated with physiological and 

s t r u c t u r a l  changes i n  leaves.  

Effect  of Moisture S t r e s s  

Different  types and l e v e l s  of moisture s t r e s s  ( insec t  a t tack,  

pathogens, s o i l  s a l in i ty ,  e tc .  i n  conifers  apparently a f f e c t  t he  re- 

f lec tance  mechanism d i f f e ren t ly  i n  d i f f e ren t  s i tua t ions .  It appears 

l i k e l y  thatz water l o s s  does not a f f e c t  t he  ref lectance d i rec t ly ,  ex- 

cept i n  t h e  region of the inf ra red  water absorption bands where the  

moisture l o s s  increases  ref lectance values, (Figure 2d). 

t he  ref lectance changes appear t o  be caused by i n t e r n a l  s t ruc tu ra l  

o r  chemical changes associated wlth the  water loss. 

of moisture s t r e s s  was observed i n  t h e  t r e e s  t h a t  were grown f o r  a 

long period of time a t  the  high s o i l  moisture tension (-12 atm. ) . 
The new fo l iage  from these trees was short  and had a l a r g e r  than nor- 

ma l t r ansec t iona l  area.  

In  general, 

The f i r s t  type 

I n  comparison t o  a t ransect ion of fo l iage  from 
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a healthy tree (Figure 4) grown a t  low moisture tension, t ransec t ions  

of fo l iage  from trees grown a t  -12 bars of moisture tension revealed 

stoma t h a t  w e r e  so t i g h t l y  closed,and i n  Some cases degenerate, t h a t  

they were d i f f i c u l t  t o  d i f f e r e n t i a t e  from t h e  rest bf t h e  epidermal 

c e l l s  under medium magnification ( X l O O ) .  

needles gave higher t.lian normal surface ref lectance.  

It seems l i k e l y  t h a t  these 

Micro -examination of t ransec t ions  of fo l i age  from trees t h a t  had 

grown under moisture st,r.ess of a t  least  -17 bars  (Figure 5)  showed again 

tha t  t h e  epidermal t:elLs were t i g h t l y  packed i n  comparison t o  healthy 

fo l iage  (Figure 4 ) .  

stomata where subs id ia ry  cells and guard c e l l s  are disoriented and the 

sub-stomatal cavit- has broken apar t .  It w a s  not apparent i n  micro- 

evaluation that there was any s ign i f i can t  col lapse of the  mesophyll 

c e l l s  as has been offered bJ some authors as an explanation f o r  both 

increased and decreased inf ra red  re f lec tance .  However, there does 

appear t o  be some mesophyll c e l l  w a l l  thickening associated with the 

high stress t r ea tmen t ,  and some d i s t i n c t  changes i n  the r idges  of t h e  

mesophyll c e l l s .  I t  i s  not l i k e l y  t h a t  t h i s  apparent shrinkage e f f e c t  

i s  caused by a change i n  t h e  r i g i d  l i g n i f i e d  mesophyll c e l l  w a l l s ,  but 

rather i s  caused by shrinkage of the  cytoplasm and the  accompanying 

withdrawal from t h e  c e l l  walls. 

a very minute t r ans fe r  of so lu t e  from t h e  cytoplasm t o  t h e  mesophyll 

c e l l  w a l l s .  It seems reasonable t h a t  t h i s  minute movement of l i q u i d  

out  of the cytoplasm causes an increasing concentration of so lu te  and 

llowever, now there is  evidence of nonfunctional 

This  phenomenon could be achieved with 
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subcel lular  p a r t i c l e s  (such as s ta rch  grains) .  I n  addition, t h e  meso- 

phyl l  c a l l s  decrease i n  the  water while t he  c e l l  w a l l s  remain the  same 

s ize;  t h i s  may cause or contribute t o  the  increased i n t e r n a l  s ca t t e r ing  

and ref lectance a t  some wavelengths. 

ref lectance may be the  consequence of decreased absorption by compounds 

i n  the  l e a f  o ther  than water, a t  some wavelengths, and by t h e  same 

reason may r e s u l t  i n  decreased ref lectance a t  other  wavebands (notably 

.75 t o  1.15 microns). 

It i s  a l so  possible t h a t  increased 

CHANGES OBSEEED I N  BROADIXAVED SEEDLINGS 

Spe c t r a l  Ref 1 e c tanc e 

Representative curves obtained from one sycamore l e a f  are shown i n  

Figure 6 and i l l u s t r a t e  the  basic pa t te rn  of spec t ra l  ref lectance changes 

observed. 

A b e t t e r  view of the  changes which occurred can be rea l ized  when re- 

Changes ob- f lec tance  a t  one wavelength i s  p lo t ted  over moisture content. 

served i n  the v i s ib l e  portion of the  spectrum (0.38 t o  0.72 microns) were 

e r r a t i c  o r  non-existent (Figure 7) and changes i n  the  photographic inf ra -  

red (0.7 t o  1.2 microns) were too small t o  be photographically s ign i f icant  

(Figure 8 and 9 ) .  

t r end  was observed w i t h  ref lectance increasing as moisture content decreas- 

ed (Figure 10, 11 and 12) .  

A t  longer wavelengths, however, a d i s t i n c t  curvi l inear  

Leaf Reflectance Under Low Moisture S t r e s s  

Reflectance cha rac t e r i s t i c s  of leaves which formed and developed 

under low l e v e l s  of moisture stress d id  not change rad ica l ly  when mois- 

t u r e  s t r e s s  increased a f t e r  t he  leaves had matured. This w a s  t rue  f o r  
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Figure 6. --Spectral reflectance curves for a, sycamore leaf with vary- 
ing moisture content. The leaf was allawed to air dry between success- 
ive measurements, 
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Figure ' r .  --Spectral ref lectance a t  Figure 8. --Spectral ref lectance 
0.6 microns a s  a fu i rc~t ior~  of moisture a t  0.9 microns a s  a function of 
for f ive  leaves e moisture content for  s i x  leaves. 

Figure 9. -- Spectral  re f lec tance  
a t  1.1 microns as  a function of 
moisture content fo r  s i x  leaves. 
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Figure 10. --Free-hand average curves 'Figure 11. --Free-hand average 
of spec t r a l  ref lectance a t  1 . 5 5  mic- curves of spec t ra l  ref lectance 
rons as a function of moistulre con- a t  2.05 microns as a function 
t e n t  f o r  two species. of moi.sture content for two species .  
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Figure 12. --Free-hand average 
curves of spectra1 re f lec tance  
a t  2.50 microns a s  a function of 
moisture content f o r  two species. 
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a l l  of t h e  mature leaves se lec ted  from t h e  f i r s t  group of trees on 

March 28 and from t h e  second group of trees on May 9. 

curves i n  Figure 13  are typ ica l  of the  data obtained from mature leaves 

on watered and unwatered p lan ts  on March 28. 

tension had increased t o  -20.9 bars  i n  the  unwatered, as compared t o  

-6.2 ba r s  i n  t h e  watered plant,but re f lec tance  of the  mature leaves 

had not changed g rea t ly  (Figure 1 4 ) .  

re f lec tance  were observed between t h e  m a t u r e  leaves on trees 3W and 

3NGIT. These differences were q u i t e  s m a l l  i n  March but grew progressively 

l a rge r  as moisture stress increased i n  3rJw. Change i n  re f lec tance  over 

time i s  shown i n  Figure 1 5  fo r  e ight  wavelengths. The difference be- 

tween the  watered and unwatered trees i s  most noticeable a t  0.80 and 

1.65 microns and i s  e s sen t i a l ly  n i l  a t  wavelengths below 0.80 o r  above 

1.65 microns. 

change over t i m e  as the  data for  m a t u r e  leaves from trees 3W and 3NW. 

The re f lec tance  

By ea r ly  May moisture 

Somewhat g rea t e r  differences i n  

Data for  other  mature leaves show the  same pa t t e rn  of 

Leaf Reflectance Under High Moisture S t r e s s  

Reflectance cha rac t e r i s t i c s  of leaves which formed and developed 

under high l e v e l s  of moisture stress changed markedly as the  leaves 

matured but remained qu i t e  stable once maturity had been reached.. 

Changes observed i n  the  second imature leaves selected on trees 2W 

and 2NW are typica l ,  and a re  i l l u s t r a t e d  i n  Figure 16. I n  cont ras t  

t o  results with mature leaves, re f lec tance  from immature leaves i s  

lower f o r  t he  unwatered than f o r  t he  watered p l an t  a t  a l l  wavelengths. 
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Figure 13. --Spectral ref lectance cxrves obtained on March 28, 1967, 
from the  upper surfaces of  s ingle  mature leaves on two yellow poplar 
seedlings t h a t  had been watered (2W) and unwatered (2NW) a s  t he  plants  
leafed out a t  t he  beginning of t h e i r  t h i r d  growing season. 
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Figirre 14. --Spectral ref lectance curves obtained on May 2 and 4, 1967, 
f'rom t h e  upper surfaces of t h e  same mature leaves used t o  obtain the  
curves i n  Figure 13. 
and appeared t o  function normally throughout the  period. 

Both leaves remained on t h e i r  respective p lan ts  
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Immature leaves se lec ted  on March 28 on the  first group of p lan ts  

represent a condition intermediate between the  low stress under which 

the"mature"1eaves developed and the  high stress associated with the  

second immature leaves.  

se lec ted  on March 28 are shown i n  Figure 17. 

longest series of measurements obtained from s ing le  leaves during the  

study. No data a re -ava i l ab le  for the  unwatered p lan t  a f t e r  May 2 be- 

cause l e a f  abscission occurred shor t ly  a f t e r  t he  unwatered p lan ts  of 

t he  f i r s t  group were watered heavily on the  evening of May 7. 

ing of a l l  mature and most immature leaves occurred promptly on a l l  

four of t he  previously unwatered p lan ts  and by May 1 4  a11 of mature and 

a l l  but two of the marked immature leaves had f a l l en .  

Typical data  f o r  one p a i r  of immature leaves 

These da ta  represent the  

Y e l l o w -  

One cons is ten t  d i f fe rence  i n  the  shape of the re f lec tance  curves 

of mature and immature leaves was observed. This occurred i n  t h e  band 

of high re f lec tance  between 0.75 and 1.35 microns. Reflectance w a s  

nearly constant across t h i s  band fo r  mature leaves,  c rea t ing  a plateau 

t h a t  sloped gent ly  downward toward longer wavelengths. For immature 

leaves the  s lope i n  t h e  plateau w a s  much more pronounced but  decreased 

as the  leaf matured (Figure 18). 

f lectance plateau i n  t h e  near-infrared region w a s  observed fo r  immature 

leaves on p l an t s  a t  a l l  l e v e l s  of moisture stress. 

This change i n  slope of t h e  high re- 

The more extreme s lope of t he  near-infrared plateau typ ica l  of 

very young leaves, and the  sharply reduced re f lec tance  from leaves de- 

veloping under high water s t r e s s ,  a r e  w e l l  shown i n  Figure 19. These 
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Figure 18. --Chan,:c i n  sp3ctra.t ref lectance from the  upper surface of 
a single i m a t u r e  l ea f  developing on a -datered yell-Dw poplar seedling 
( leaf  number 45W,) as a !?unction of  t i m e .  
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3 - TREE 41W - LOW STRESS --- TREE 41NW - HIGH STRESS 

WAVELENGTH (IN MICRONS) 

Figure 19. --Spectral reflectance from the upper surfaces of recently 
unfolded leaves of yellow poplar seedlings growing under low (41W) 
and high (41NW) xater stress regimes. 
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data came from two of the youngest and smallest leaves used during the 

study. 

hours before the measurements were obtained, and the leaf from tree 4111 

had unfolded less than 48 hours before. Leaf areas at the time the re- 

flectance data were obtained were 10.1 sq. em. and 20.0 sq. em. for 

the leaves from trees 4lNW and 41W, respectively. 

The leaf from tree 41NW had emerged and unfolded less than 24 

Many factors made it impossible to obtain periodic radiometric 

data from the yellow poplar seedlings. However, one set of measure- 

ments in the 8.1-13.2 micron band was obtained in mid-May, and these 

measurements are summarized in Table 3. 

Leaf Moisture Tension 

Efforts to naintain low levels of moisture stress in the watered 

trees were not completely successful, even when the trees were watered 

daily. Non-uniformity in rate of water application, uneven development 

of distribution of roots, differences in amount of transpiring leaf sur- 

face, and mechanical injury to roots  resulting from frequenty handling 

of the plants, may all have contributed to the differences in moisture 

tension observed between plants and, for any one plant, over time. 

Moisture tension data obtained with the Scholander pressure cell are 

shown in Table 4 and indicate the magnitude of the differences in water 

stress that developed during the study. 

Differences in the rate of growth and in ultimate leaf size were 

observed between leaves on different plants. Representative data 

showing change in leaf size over time are included in Table 5. 
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Despite var ia t ions  i n  moisture tension and leaf s ize ,  r e l a t ion -  

ships between f o l i a r  ref lectance and water stress were e s sen t i a l ly  

the  same i n  September as f o r  e i t h e r  group of seedlings i n  March, April  

and May. I n  a l l  cases, t he  l e v e l  of water stress a t  the  t i m e  of l ea f  

formation and development appeared t o  exer t  a grea te r  influence on 

f o l i a r  ref lectance than d id  the l e v e l  of water stress a t  the  t i m e  the 

ref lectance measurements were made. 

A t  least three d i s t i n c t l y  d i f f e ren t  l ea f  conditions w e r e  encoun- 

tered during the study: (1) leaves that were never subjected t o  high 

water stress, (2)  leaves t h a t  developed under l i t t l e  water stress and 

were then subjected t o  increasingly severe moisture tensions, and (3)  

leaves which developed under high water stress and were kept a t  high 

stress throughout. 

had developed under high water s t r e s s  and then had t h i s  stress Sharply 

reduced; leaves t h a t  developed under high stress always yellowed and 

f e l l  o f f  shor t ly  after the  s t ressed p lan ts  were watered. 

It proved impossible t o  work with leaves which 

Microscopic examinations of l ea f  sect ions were not made f o r  any 

yellow poplar leaves.  However, previous work with other species sug- 

ges t s  what the  in t e rna l  differences probably were between the three 

types of leaves described above. 

"The overa l l  e f f e c t  of i n t e rna l  water d e f i c i t s  i s  t o  reduce vegetative 

growth, -- W a t e r  d e f i c i t s  not only reduce the quant i ty  of growth, but 

a l so  change the qua l i ty ,  l a rge ly  by increasing the amount of l i g n i f i -  

cation and thickness of c e l l  walls!!' (p .  359). 

Kramer and Kozlowski (1960) s ta ted :  
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Based on a study with tomato plants, Gates (1955) reported that 

leaves of different ages were differentially sensitive to moisture 

stress, with growth of the younger leaves reduced more than growth of 

older leaves. Although growth was reduced less, older leaves did not 

recover from brief periodsof water shortage as rapidly as did the 

younger leaves. 

During the study several of the seedlings went through two 

complete cycles of increasing water stress, terminated by abrupt re- 

duction in that stress. In every case for which data are available, 

leaves that formed and unfolded during periods of high moisture stress 

possessed the reflectance characteristics of leaves from stressed 

T ,  

i 
I 

aB 

plants. 

(i.e. - those formed between the two periods of stress) possessed 

Leaves which formed during periods of low moisture stress 

the reflectance characteristics of leaves from the watered, or low 

stress, plants. Thus, the continuous flushing and leaf formation 

typical of yellow poplar provided a continuing series of new, immature 

leaves whose reflectance characteristics changed as the plants went 

from high, to low, to high, and back to l o w  water tensions. These 

changes were consistent, both between seedlings and over time, indicat- 

ing a distinct causative relationship between water stress and leaf 

reflectance. 

under high moisture stress, created a visibly darker leaf and this 

visible sign of water stress persisted even after the leaf had matured 

(Figure 20) . 

The lower reflectance of young leaves forming on plants 
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Figwre 20. --Visual appearance of mature and immature leavea that 
developed on yellow poplar seedlings growing under low ( b y )  and high 
(45NW) water stress regines, 
trees under high water stress was a consistent symptom of that stress. 

The dark color of leaves developing on 
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When the data relating reflectance with moisture content is corn-- 

pared with that relating reflectance and water stress, both similarities 

and differences are apparent, As previously indicated, a 8  percent of 

its overdry weight was the lowest moisture content observed for any green 

leaf taken from one of the yellow poplar seedlings subjected to high 

moisture stress. If all reflectance data for mature leaves from both 

watered and upwatered plants are compared with reflectance data for 

picked leaves having moisture contents over 200 percent, (dry weight 

basis) the increasing reflectance of mature leaves ag moisture stress 

increases is quite analagous t o  the changes observed as picked leaves 

dried. The same relationship does not hold for those leaves that de- 

veloped under higher moisture stresses. Therefore, moisture stress at 

i 

the time of leaf formation produces basically different changes in foliar 

reflectance properties than does moisture stress that develops after the 

foliage matures. 

Gates cited earlier, but is not meant to suggest that both effects can 

This observation is in keeping with the results of 

not interact. 

certainty in remote sensing of tree vigor or  foliar moisture content 

Such interactions may present a significant cause of un- 

in deciduous species if the sensors are confined to reflected energy at 

the end of the growing season. 
,- 

Although radiometric data are limited, data available suggest that 

emitted energy in the 8 to 14 micron band may provide more consistent 

indications of moisture stress than reflected energy of shorter wave- 

length. The data for pine indicate that emitted energy in the 4.5-5.5 



6 

micron band may, in addition to the 8 to 14 micron band, also give more 

meaningful data which cgn be related tg tree vigor than any band of 

solely reflected solar radiation. However, multispectral comparisoa 

of reflected and emitted energy from tree foliage appears to offer the 

most promising method for detecking differences in moisture stress be- 

tween trees. 

I 
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